Ir al contenido
English

Más noticias

Académicos de la Facultad de Medicina ganan 13 proyectos Fondecyt Regular 2025

La Universidad de Chile aprobó 102

Facultad de Medicina gana 13 proyectos Fondecyt Regular 2025

De ellos, nueve pertenecen a investigadores del Instituto de Ciencias Biomédicas, ICBM; tres al Departamento de Pediatría y Cirugía Infantil Oriente –Centro de Investigaciones Clínicas Avanzadas, CICA, del Hospital Luis Calvo Mackenna- y uno al Departamento de Obstetricia y Ginecología Norte de nuestro plantel.

Congreso Futuro:

“El Rol de los Biobancos en la Medicina Moderna”

Así se tituló la conferencia de la doctora Alicia Colombo en Congreso Futuro, exposición en la que abordó la importancia de los biobancos para la investigación médica y la necesidad de crear una normativa específica para potenciar su funcionamiento en Chile.

Fortaleciendo la colaboración pública interdisciplinar

Facultad de Medicina y SERNAGEOMIN firman convenio de colaboración

El acuerdo se enmarca dentro de las labores realizadas por el Laboratorio de Toxinas Marinas durante el proyecto “Evaluación de la contaminación ambiental orgánica e inorgánica en medios acuáticos y sus efectos en el riesgo de proliferación de cianobacterias productoras de cianotoxinas” del programa internacional ARCAL, y busca diversificar los ejes de trabajo y ampliar los tópicos de investigación aplicada, fortaleciendo la colaboración interdisciplinar.

Investigadores de la Facultad de Medicina se adjudican cinco Fondecyt de Iniciación

Y 35 en toda la Universidad de Chile

Facultad de Medicina se adjudica cinco Fondecyt de Iniciación

El objetivo del concurso Fondecyt de Iniciación es fomentar y fortalecer el desarrollo de la investigación científica y tecnológica de excelencia, a través de la promoción de nuevos investigadores e investigadoras, mediante el financiamiento de proyectos de dos o tres años de duración en todas las áreas del conocimiento.

Reafirmando el compromiso con la salud pública y la colaboración transdisciplinaria

Exitosa XXVI versión de la Escuela Internacional de Verano

Con más de 400 participantes y cerca de 40 destacados académicos nacionales e internacionales, la Escuela Internacional de Verano 2025 de la Escuela de Salud Pública de la Facultad de Medicina se consolidó como un espacio de aprendizaje, intercambio y colaboración para enfrentar los desafíos globales en salud pública.

El equipo biestamental del CPHS; al centro su presidenta, profesora Andrea González.

Comité Paritario de Higiene y Seguridad, presente en toda la Facultad de Medicina

Por un 2025 más seguro para todos

El equipo biestamental del CPHS está definiendo lo que serán nuevas vías de información a la comunidad institucional, con el fin de mejorar el acceso a actividades de capacitación, así como el conocimiento respecto de protocolos de acción frente a accidentes laborales, enfermedades profesionales o situaciones de emergencia, entre otras.

Profesoras Karen Basfi-Fer, Paola Cáceres, Evelyn Bustamante, Claudia Gacitúa y Carolina Barrera

Y obtiene segundo lugar

Escuela de Nutrición participa en Congreso Iberoamericano

Del 15 al 16 de enero se llevó a cabo en Concepción el Congreso Iberoamericano de Educación en Ciencias de la Salud 2025, el cual tiene como propósito ser un espacio para la actualización en educación y para compartir experiencias de buenas prácticas docentes entre carreras de la salud.

La Universidad de Chile se convirtió en la institución de educación superior más demandada del país, con 46.256 postulaciones válidas. En tanto, Medicina y Plan Común de Ingeniería en la misma casa de estudios, fueron la primera y tercera carrera más postulada del sistema.

Medicina es la carrera más demandada

U. de Chile es la institución de educación superior más postulada

Este lunes 20 de enero, se dieron a conocer los resultados del proceso de selección a la educación superior y según datos del DEMRE, la Universidad de Chile resultó ser la universidad más postulada del sistema, con 46.256 postulaciones válidas. Medicina en la misma institución, en tanto, es la carrera número uno en postulaciones este 2025. En este marco, la Casa de Bello convocó a más de 7.900 personas a matricularse entre el 21 y 23 de enero.

Parte importante de su formación la cursó en la Facultad de Medicina de la Universidad de Chile

Publicación liderada por investigador chileno en la portada de revista Nature

Publicación liderada por investigador chileno en la portada de Nature

“A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish” es el nombre del paper que, según señala su propio autor, “explica cómo un animal puede responder a una corriente de agua en la oscuridad. Esto suena relativamente simple, pero en realidad es bastante más complejo. Si un animal –en este caso, una larva de pez cebra- se encuentra inmerso en un flujo de agua, la corriente tenderá a arrastrar al animal ‘río abajo’, un desplazamiento que el pez puede fácilmente percibir través de su sistema visual”.

Para explicarlo, compara esta situación con una de nuestra cotidianeidad: “Algo similar ocurre cuando uno está sentado en un tren y éste empieza a moverse: si lo imaginamos, en algún momento el paisaje fuera del tren comienza a pasar frente a nuestros ojos y, a raíz de esto, sabemos que el tren se está moviendo. Sin embargo, en la ausencia de estímulos visuales, el tren se podría mover en cualquier dirección y a cualquier velocidad sin que nosotros nos pudiéramos dar cuenta. Sin el ‘flujo óptico’ del paisaje en la ventana, nuestro marco de referencia es el interior del tren, y como nuestro cuerpo se mueve a la misma velocidad que éste no hay forma de que sepamos que se está moviendo. En otras palabras, el interior del tren es nuestro marco de referencia y en relación a este marco no hay movimiento alguno. Lo mismo ocurre en el caso de pez. En la ausencia de estímulos visuales, el marco de referencia del animal es el flujo de agua en el cual está inmerso, y ya que tanto el agua como el pez se mueven a la misma velocidad, sería físicamente imposible que el pez pueda percibir la corriente”.

A pesar de esto, añade, numerosos animales acuáticos se orientan y nadan en contra de flujos de agua; es decir, tratan de no ser arrastrados por la corriente en una conducta conocida como rheotaxis. “Incluso peces que viven en condiciones de muy poca luminosidad, en aguas extremadamente turbias o que naturalmente no poseen ojos pueden ejecutar esta conducta sin mayores problemas. Entonces la pregunta era bien simple: ¿cómo lo hacen?”, indica el investigador.

A favor o en contracorriente

De esta forma, el doctor Oteíza señala que sus experimentos demostraron que, en ausencia de marcos de referencia visuales, la larva del pez cebra ejecuta rheotaxis usando su línea lateral –que es un conjunto de órganos mecano-sensitivos ubicados en la superficie del pez- para ‘leer' gradientes de velocidad en el flujo. “Para cualquier fluido en contacto con una superficie estática, como podría ser la ribera de un río o una roca, por ejemplo, las moléculas de agua más cercanas a esta superficie tienden a adherirse a ella y, por lo tanto, a desplazarse más lentamente. A su vez, estas moléculas hacen también más lentas a sus vecinas, lo que genera un gradiente de velocidades en el cual el flujo se desplaza más lentamente mientras más cercano esté a una superficie estática. Esto hace que, por ejemplo, en un río el flujo de agua sea muy lento en las orillas y muy rápido en el centro. A su vez, estos gradientes de velocidad tenderán a hacer rotar cualquier objeto, como podría ser el cuerpo de una larva de pez cebra que se encuentre inmerso en ellos. Si por ejemplo la cabeza del pez se encuentra cerca de la ribera izquierda del río y la cola más cerca del centro, el gradiente de velocidad generará un flujo rotacional alrededor del cuerpo del pez y su consecuente rotación en el sentido de las agujas del reloj”.

Basándose en lo anterior, sus análisis les permitieron describir en un simple conjunto de reglas, un algoritmo, mediante el cual la larva de pez cebra ejecuta la rheotaxis. “Este algoritmo conductual señala que, si el pez se desplaza de una zona de alta magnitud a una zona de baja magnitud de gradiente, el animal simplemente sigue nadando en la misma dirección. En cambio, si se desplaza desde una zona de baja a una zona de alta magnitud de gradiente, el pez ejecuta un giro en la dirección del flujo rotacional alrededor de su cuerpo. En términos de las posibles aplicaciones de estos descubrimientos, el doctor Oteíza agrega que “a través de modelos computacionales pudimos demostrar que este algoritmo es capaz de generar la conducta por sí solo. Esto implica su posible utilidad en el desarrollo de agentes robóticos que pueden navegar flujos, ya sea agua o aire, en ausencia de referencias visuales. Es interesante imaginar drones que, mediante este algoritmo, puedan navegar a través de edificios, tractos respiratorios, cañerías y/o vasos sanguíneos”, concluye el investigador.

Conocer la actividad cerebral mediante la conducta

Además, indica, este trabajo abre una serie de posibilidades en el campo de la neurociencia. “A pesar de que el estudio de neuronas individuales o de grupos neuronales específicos ha generado fundamentales avances en las neurociencias, la incapacidad de registrar la actividad del cerebro completo en tiempo real ha impedido un verdadero entendimiento de este órgano. En los últimos años, sin embargo, nuevas herramientas genéticas y de microscopía, especialmente en el pez cebra, han permitido registrar la actividad de prácticamente todo el cerebro en menos de un segundo. Aunque esto representa el sueño cumplido de cualquier neurocientífico de sistemas, los primeros resultados de estas técnicas pusieron rápidamente de relieve la enorme complejidad del sistema nervioso central y las dificultades para darle un sentido biológico a los datos. Entonces, en mi opinión y la de muchos otros, para justificar estos avances técnicos y finalmente transformar datos en conocimiento, es necesario basar nuestros análisis en la principal consecuencia de la actividad cerebral: la conducta animal. En resumen, si el animal hace algo, necesariamente debe existir una estructura o dinámica neuronal que sea responsable de ese algo. Entonces, e inspirándonos en la neurotología más clásica, a partir de la descripción algorítmica de la conducta podemos construir un modelo predictivo de los elementos neurales responsables de esta conducta. A este modelo le llamamos ‘el detector de rotación’ –the curl detector- y actualmente estamos utilizando las técnicas de registro a nivel del cerebro completo para encontrarlos. ¡¡Eso va a estar entretenido!!”

El doctor Oteíza aclara que la totalidad de este trabajo fue realizada en el laboratorio del doctor Florian Engert en Harvard. “Allí conté con la invaluable colaboración de Iris Odstrcil, una talentosísima estudiante de doctorado; Ruben Portugues, un post-doctorando con un impresionante background en física y matemáticas; George Lauder, un reconocido profesor de Ictiología en el Museo de Zoología Comparada y del mismo Florian, quien generosamente me abrió las puertas de su laboratorio y me dio la más absoluta libertad para trabajar en lo que yo quisiera por más de seis años.

Usted realizó su tesis de pregrado con el doctor Manuel Kukuljan y su doctorado con el doctor Miguel Concha. ¿Cómo fue la influencia de esos investigadores y de nuestra institución en su formación?

Originalmente estudié Medicina Veterinaria en la Universidad de Chile, y en el momento en que tenía que realizar mi tesis de pregrado había dos opciones: un hospital veterinario ó un laboratorio de investigación. En ese momento yo ya tenía claro que el ejercicio de la medicina no era lo mío, así que la decisión no fue muy difícil de tomar. Y tuve suerte, porque al visitar el laboratorio del doctor Manuel Kukuljan en la Facultad de Medicina, la pura “onda” del lugar me hizo decidir en menos de dos minutos que allí era donde quería quedarme. Entre Manuel y Patricio Olguín, que en ese tiempo era estudiante de doctorado y hoy también es un profesor en la Facultad de Medicina de la Universidad de Chile, me enseñaron prácticamente todas las bases del quehacer científico. Luego de esto, y de mis primeros viajes al exterior, ya tenía la idea de trabajar con el pez cebra y Miguel Concha, quien en esa época venía llegando de un exitoso post-doctorado en Londres me pareció la mejor alternativa. Tomé una clase con él, y rápidamente decidimos hacer un par de experimentos, los que terminaron transformándose en mi tesis de doctorado. En este proceso también jugó un rol fundamental Carl-Philipp Heisenberg, a quien visité en su laboratorio del Instituto Max Planck de Biología Celular y Genética en múltiples ocasiones.

¿Cómo valora usted que esta investigación haya sido portada de Nature?

Yo feliz que mi paper lo vea más gente, pero creo que hay que ser consciente de que tiene un componente azaroso gigantesco. La calidad de la ciencia que me ha tocado ver en Chile, Alemania o Estados Unidos es en general bastante parecida, y terminar siendo publicado en una revista con mayor o menor impacto tiene que mucho que ver con política y con el azar de encontrar algo nuevo. Yo tuve la suerte de trabajar en un lugar famoso, toparme con una pregunta interesante y de terminar encontrando algo novedoso. Eso está muy bien, pero también hay científicos tremendamente capacitados que no han tenido esa suerte y que por lo tanto puede que no tengan la oportunidad de tener sus propios laboratorios en el futuro. Esto implica que en cierto momento nosotros, deberíamos, como comunidad científica, establecer métodos más justos para juzgar la calidad de nuestro trabajo. Dicho eso, igual es cool tener la portada de Nature!!

Finalmente el doctor Oteíza explica que se encuentra postulando a una serie de posiciones para instalar su propio laboratorio. “Como mi pareja ya tiene un trabajo en Alemania, la primera prioridad sería  conseguir algo allá. Sin embargo, tampoco estamos cerrados a otras alternativas; la vida académica implica, para bien y para mal, la necesidad de moverse constantemente”.